Soil model parameter estimation with ensemble data assimilation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model error estimation in ensemble data assimilation

A new methodology is proposed to estimate and account for systematic model error in linear filtering as well as in nonlinear ensemble based filtering. Our results extend the work of Dee and Todling (2000) on constant bias errors to time-varying model errors. In contrast to existing methodologies, the new filter can also deal with the case where no dynamical model for the systematic error is ava...

متن کامل

Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parame...

متن کامل

Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn im...

متن کامل

Re-thinking Sensitivity of Model Parameter Values in Soil Moisture Assimilation Using the Evolutionary Data Assimilation

The sensitivity of land surface model parameters is usually examined for one parameter at a time in response to changes in observation data and/or the model estimated output. This parameter independence approach assumes that there are limited interactions between model parameters a precondition which is highly unlikely for land surface models. Additionally, the model parameter values are widely...

متن کامل

Estimating Model Parameters with Ensemble-Based Data Assimilation: Parameter Covariance Treatment

In this work, various methods for the estimation of the parameter uncertainty and the covariance between the parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two methods are compared for the estimation of the covariances between the state variables and the parameters: one using a single ensemble for the simultaneous estimation of mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmospheric Science Letters

سال: 2009

ISSN: 1530-261X,1530-261X

DOI: 10.1002/asl.220